Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathbf{R b}_{3} \mathbf{T i}_{3} \mathbf{T e}_{11}$

Fu Qiang Huang and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.nwu.edu

Received 23 June 2000
Accepted 28 June 2000
Trirubidium trititanium undecatelluride, $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$, has been synthesized from the reaction of titanium, tellurium, and $\mathrm{Rb}_{2} \mathrm{Te}_{3}$ at 773 K . Its structure has been determined from single-crystal X-ray data. It is composed of one-dimensional $\left[\mathrm{Ti}_{3} \mathrm{Te}_{11}{ }^{3-}\right]$ chains built by face-sharing pentagonal TiTe_{7} bipyramids and distorted TiTe_{6} octahedra. These chains adopt hexagonal closest packing along the [101] direction. Rb atoms are located among these chains. The wide range of $\mathrm{Te}-\mathrm{Te}$ interactions makes the assignment of formal oxidation states impossible. The compound is isostructural with $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$.

Comment

The study of low-dimensional solids is a central one in solidstate chemistry (Rouxel, 1986; Monceau, 1985). Such solids exhibit interesting physical properties, including superconductivity and charge-density waves (Withers \& Wilson, 1986; Chaussy et al., 1976; Monceau, 1985; Monceau et al., 1976). Many one-dimensional polychalcogenides $A / M / Q(A=$ $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; M=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf} ; Q=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$; Sunshine et al., 1987a,b; Kang \& Ibers, 1988; Keane \& Ibers, 1991; Cody \& Ibers, 1994; Pell \& Ibers, 1996, 1997; Anderson et al., 2000) have been synthesized with the aid of an $A_{2} Q_{x}(x \geq 1)$ reactive flux, since $\mathrm{K}_{4} \mathrm{Ti}_{3} \mathrm{~S}_{14}$ was first synthesized by the reactive flux method (Sunshine et al., 1987a,b). These polychalcogenides contain linear infinite $[M / Q]$ chains that are hexagonally closest packed. The polysulfide and polyselenide chains contain, almost exclusively, $Q_{2}{ }^{2-}$ dimers and Q^{2-} monomers (Pell \& Ibers, 1997). The known polytellurides are $\mathrm{K}_{4} M_{3} \mathrm{Te}_{17}$ ($M=\mathrm{Zr}$, Hf; Keane \& Ibers, 1991), $A_{4} \mathrm{Zr}_{3} \mathrm{Te}_{16}(A=\mathrm{Rb}, \mathrm{Cs}$; Cody \& Ibers, 1994; Anderson et al., 2000), $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ (Pell \& Ibers, 1996), and $\mathrm{Cs}_{5} \mathrm{Hf}_{5} \mathrm{Te}_{26}$ (Pell \& Ibers, 1996). The $\mathrm{Te}-\mathrm{Te}$ interactions in these $[M / \mathrm{Te}]$ chains are much more complicated in many of these compounds, showing a variety of distances intermediate between the single-bond distance and the van der Waals distance (about 2.76 and $4.10 \AA$, respectively; Shannon, 1976). Accordingly, formal oxidation states are usually impossible to assign in such compounds. We describe here the one-dimensional polytelluride $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$, which is isostructural with $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$.

The structure of $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ is displayed in Fig. 1. It consists of hexagonal closest packing of $\left[\mathrm{Ti}_{3} \mathrm{Te}_{11}{ }^{3-}\right]$ chains along the
[101] direction. These chains are separated from each other by Rb atoms. Three unique Rb atoms in the structure are coordinated to ten, nine, and twelve Te atoms, respectively. The $\mathrm{Rb}-\mathrm{Te}$ distances range from 3.5510 (8) to 4.2091 (8) \AA. In contrast, two unique Rb atoms in $\mathrm{Rb}_{4} \mathrm{Te}_{3} \mathrm{Te}_{16}$ are coordinated to eleven and twelve Te atoms, respectively, and $\mathrm{Rb}-\mathrm{Te}$ distances vary from 3.614 (2) to 4.316 (3) \AA (Cody \& Ibers, 1994).

Each $\left[\mathrm{Ti}_{3} \mathrm{Te}_{11}{ }^{3-}\right]$ chain contains three unique Ti atoms and eleven unique Te atoms. Two of the Ti atoms adopt a pentagonal bipyramidal geometry, and the other Ti atom has a distorted octahedral geometry. These polyhedra link together by three face-sharing Te atoms, as shown in Fig. 2. Here, the shortest $\mathrm{Ti}-\mathrm{Ti}$ distance is 3.174 (1) \AA, which does not differ from that in $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ [3.172 (2) \AA]. The shortest nonbonding $\mathrm{Ti}-\mathrm{Ti}$ distance in $\mathrm{Na}_{2} \mathrm{Ti}_{2} \mathrm{Se}_{8}$ is $3.253 \AA$ (Kang \& Ibers, 1988), and that in TiO_{2} is 3.07 (4) \AA (Simons \& Dachille, 1967). Therefore, no $\mathrm{Ti}-\mathrm{Ti}$ bonding occurs in $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$. Since the energy levels of $3 d$ orbitals for Ti^{4+} are higher than those of the valence orbitals for Q^{2-}, Ti atoms are presumed to be formally Ti^{4+} in the polychalcogenides. The $\mathrm{Ti}-\mathrm{Te}$ distances range from 2.636 (1) to 2.912 (1) \AA, consistent with those in $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ [2.628 (2) to 2.952 (2) \AA; Pell \& Ibers, 1996].

As is well known, tellurium has a greater propensity than the other chalcogens to exhibit $Q-Q$ interactions of intermediate strength. The present compound, $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$, illustrates this nicely. Only atoms Te 1 and Te 2 are Te^{2-} monomers, since they are not bonded to any other Te atoms. Each Te atom in the other nine is bonded to more than one Te atom, and the $\mathrm{Te}-\mathrm{Te}$ distances range from 2.79 to 3.82 A . Only $\mathrm{Te}-\mathrm{Te}$ bonding distances from 2.7910 (6) to 3.2306 (6) \AA are shown in Table 1. There are four $\mathrm{Te}-\mathrm{Te}$ distances less than $3.0 \AA$, as shown in Fig. 2. Clearly, it is not possible to assign formal oxidation states in $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$.

Figure 1
The unit cell of $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ viewed down [101]; filled, cross-hatched and open circles represent Rb, Ti and Te atoms, respectively.

Figure 2

The [$\mathrm{Ti}_{3} \mathrm{Te}_{11}{ }^{3-}$] chain along [101] in $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ shown with 90% probability displacement ellipsoids. Pairs of Te atoms closer than $3.0 \AA$ are connected by lines.

Experimental

Crystals of $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$ were obtained from an initial mixture of Ti (1.0 mmol) (Alfa, 99.9%), $\mathrm{Te}(4.0 \mathrm{mmol})$ (Aldrich, 99.8%), and $\mathrm{Rb}_{2} \mathrm{Te}_{3}(0.5 \mathrm{mmol})$, synthesized from the reaction of stoichiometric amounts of elemental Rb (Aldrich, 98%) and Te in liquid ammonia. The mixture was loaded under argon, sealed under 10^{-4} Torr (1 Torr $=133.322 \mathrm{~Pa}$) in a fused-silica tube, heated in a furnace to 773 K at $1 \mathrm{~K} \mathrm{~min}^{-1}$, kept at 773 K for 3 d , cooled at $0.05 \mathrm{~K} \mathrm{~min}^{-1}$ to 373 K , and finally cooled to room temperature. The reaction mixture was washed with dimethylformamide, and then dried with acetone. It contained black needles and blocks of $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$. The yield of these crystals was about $80-90 \%$. Analysis of these crystals with an EDXequipped Hitachi S-4500 SEM showed the presence of Rb, Ti and Te in the ratio 1:1:4.

Crystal data

$\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{Te}_{11}$
$M_{r}=1803.71$
Monoclinic, $P 2_{1} / n$
$a=10.5757$ (6) \AA
$b=15.0449$ (8) \AA
$c=14.7710$ (8) \AA
$\beta=92.9540(10)^{\circ}$
$V=2347.1$ (2) \AA^{3}
$Z=4$
$D_{x}=5.104 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14466
\quad reflections
$\theta=1.93-28.00^{\circ}$
$\mu=20.560 \mathrm{~mm}^{-1}$
$T=153(2) \mathrm{K}$
Needle, black
$0.150 \times 0.022 \times 0.017 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CDD diffractometer
ω scans
Absorption correction: numerical face indexed $T_{\text {min }}=0.321, T_{\text {max }}=0.511$
14466 measured reflections
5422 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.028$
$w R\left(F^{2}\right)=0.066$
$S=1.037$
5422 reflections

4676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.00^{\circ}$
$h=-9 \rightarrow 13$
$k=-19 \rightarrow 19$
$l=-18 \rightarrow 15$
Intensity decay: <2\%

$$
\begin{aligned}
& 154 \text { parameters } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.0400 F_{o}^{2}\right)^{2}\right] \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.89 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Table 1
Selected geometric parameters (\AA).

$\mathrm{Rb} 1-\mathrm{Te} 5^{\text {i }}$	3.7012 (8)	Rb3-Te3	4.1953 (8)
Rb1-Te3 ${ }^{\text {ii }}$	3.7101 (8)	Rb3-Te10 ${ }^{\text {v }}$	4.2091 (8)
$\mathrm{Rb} 1-\mathrm{Te} 4^{\text {iii }}$	3.7270 (8)	Ti1-Te2	2.7187 (11)
$\mathrm{Rb} 1-\mathrm{Te} 6^{\text {i }}$	3.8179 (8)	Ti1-Te3 ${ }^{\text {xv }}$	2.7844 (11)
$\mathrm{Rb} 1-\mathrm{Te} 9^{\text {ii }}$	3.8518 (8)	Ti1-Te5 ${ }^{\text {xvi }}$	2.7910 (11)
$\mathrm{Rb} 1-\mathrm{Te} 2$	3.8756 (8)	Ti1-Te7 ${ }^{\text {iii }}$	2.8275 (11)
Rb1-Te10	3.9319 (8)	Ti1-Te10	2.8531 (11)
Rb1-Te8 ${ }^{\text {ii }}$	3.9345 (8)	Ti1-Te6 ${ }^{\text {xvi }}$	2.8644 (11)
Rb1-Te11	3.9415 (8)	Ti1-Te9 ${ }^{\text {xv }}$	2.9121 (11)
$\mathrm{Rb} 1-\mathrm{Te} 6^{\text {iv }}$	4.1518 (8)	Ti2-Te1	2.7813 (11)
$\mathrm{Rb} 2-\mathrm{Te} 5$	3.5510 (8)	Ti2-Te9	2.7893 (11)
$\mathrm{Rb} 2-\mathrm{Te} 1^{\text {v }}$	3.6177 (8)	Ti2-Te8	2.7970 (11)
$\mathrm{Rb} 2-\mathrm{Te} 1^{\text {vi }}$	3.6413 (8)	Ti2-Te $4^{\text {xii }}$	2.8435 (11)
$\mathrm{Rb} 2-\mathrm{Te} 8^{\mathrm{v}}$	3.6572 (8)	Ti2-Te $10{ }^{\text {xvii }}$	2.8691 (11)
$\mathrm{Rb} 2-\mathrm{Te} 7^{\text {vii }}$	3.7932 (8)	$\mathrm{Ti} 2-\mathrm{Te} 7^{\text {xii }}$	2.8815 (11)
$\mathrm{Rb} 2-\mathrm{Te} 3^{\text {viii }}$	3.8476 (8)	Ti2-Te11 ${ }^{\text {xii }}$	2.8829 (11)
$\mathrm{Rb} 2-\mathrm{Te} 3^{\text {ix }}$	4.0293 (8)	Ti3-Te1	2.6363 (11)
$\mathrm{Rb} 2-\mathrm{Te} 2^{\text {vi }}$	4.0602 (8)	Ti3-Te2	2.6399 (12)
Rb2-Te11 ${ }^{\text {x }}$	4.1034 (8)	Ti3-Te11 ${ }^{\text {xii }}$	2.8024 (11)
Rb3-Te ${ }^{\text {viii }}$	3.6248 (7)	Ti3-Te6 ${ }^{\text {xvi }}$	2.8143 (11)
$\mathrm{Rb3}-\mathrm{Te} 5{ }^{\text {xi }}$	3.6954 (8)	Ti3-Te $4^{\text {xii }}$	2.8162 (12)
Rb3-Te2 ${ }^{\text {xii }}$	3.7040 (7)	$\mathrm{Ti} 3-\mathrm{Te} 3^{\text {xv }}$	2.9454 (11)
Rb3-Te8	3.7498 (8)	$\mathrm{Te} 3-\mathrm{Te} 7^{\text {xii }}$	2.8103 (6)
$\mathrm{Rb3}$ - $\mathrm{Te} 10^{\text {xiii }}$	3.7978 (8)	$\mathrm{Te} 4-\mathrm{Te} 10^{\text {xviii }}$	2.8870 (6)
$\mathrm{Rb} 3-\mathrm{Te} 7^{\text {xii }}$	3.8485 (8)	Te5-Te10 ${ }^{\text {x }}$	3.1316 (6)
Rb3-Te11 ${ }^{\text {xii }}$	3.9324 (8)	Te5-Te6	3.1411 (6)
$\mathrm{Rb3} 3-\mathrm{Te} 9^{\text {viii }}$	3.9915 (7)	$\mathrm{Te} 5-\mathrm{Te} 9^{\text {xix }}$	3.2306 (6)
$\mathrm{Rb3} 3-\mathrm{Te} 4^{\text {xiv }}$	4.0196 (8)	Te6-Te11 ${ }^{\text {iv }}$	2.8909 (6)
$\mathrm{Rb} 3-\mathrm{Te} 1^{\text {xii }}$	4.0770 (8)	Te8-Te9	2.7910 (6)

Symmetry codes: (i) $x, 1+y, z$; (ii) $x, y, 1+z$; (iii) $x-1, y, z$; (iv) $1-x, 1-y, 2-z$; (v) $-x, 1-y, 1-z$; (vi) $x, y-1, z$; (vii) $x-1, y-1, z$; (viii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ix) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (x) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (xi) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (xii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (xiii) $x, y, z-1$; (xiv) $x-1, y, z-1 ;$ (xv) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$;(xvi) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (xvii) $\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2} ;($ xviii $) 1+x, y, z$; (xix) $1-x, 1-y, 1-z$.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL97.

This research was supported by the National Science Foundation through grant No. DMR97-09351.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1300). Services for accessing these data are described at the back of the journal.

inorganic compounds

References

Anderson, A. B., Wang, R.-J. \& Li, J. (2000). Acta Cryst. C56, 2-4.
Bruker (2000). SMART (Version 5.054) and SAINT-Plus (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
Chaussy, J., Haen, P., Lasjaunias, J. C., Monceau, P., Waysand, G., Waintal, A., Meerschaut, A., Molinié, P. \& Rouxel, J. (1976). Solid State Commun. 20, 759-763.
Cody, J. A. \& Ibers, J. A. (1994). Inorg. Chem. 33, 2713-2715.
Kang, D. \& Ibers, J. A. (1988). Inorg. Chem. 27, 549-551.
Keane, P. M. \& Ibers, J. A. (1991). Inorg. Chem. 30, 1327-1329.
Monceau, P. (1985). Physics and Chemistry of Materials with Low-dimensional Structures. Series B, Quasi-One-Dimensional Materials. Electronic Properties of Inorganic Quasi-One-dimensional Compounds (Parts I and II). Dordrecht, The Netherlands: D. Reidel.

Monceau, P., Ong, N. P., Portis, A. M., Meerschaut, A. \& Rouxel, J. (1976). Phys. Rev. Lett. 37, 602-606
Pell, M. A. \& Ibers, J. A. (1996). Chem. Mater. 8, 1386-1390.
Pell, M. A. \& Ibers, J. A. (1997). Chem. Ber. 130, 1-8.
Rouxel, J. (1986). Physics and Chemistry of Materials with Low-Dimensional Structures. Series B, Quasi-One-Dimensional Materials. Crystal Chemistry and Properties of Materials with Quasi-One-dimensional Structures. Dordrecht, The Netherlands: D. Reidel.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXTL DOS/Windows/NT. Version 5.101. Bruker AXS Inc., Madison, Wisconsin, USA.
Simons, P. Y. \& Dachille, F. (1967). Acta Cryst. 23, 334-336.
Sunshine, S. A., Kang, D. \& Ibers, J. A. (1987a). J. Am. Chem. Soc. 109, 62026204.

Sunshine, S. A., Kang, D. \& Ibers, J. A. (1987b). Mater. Res. Soc. Symp. Proc. 97, 391-396.
Withers, R. L. \& Wilson, J. A. (1986). J. Phys. C, 19, 4809-4845.

